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Non-linear diffusion equations with numerical stability problems are common in
many branches of science. An example is thek-diffusion parametrization for vertical
turbulent mixing in atmospheric models that creates a system of non-linear diffusion
equations with stability problems. In this paper a new algorithm to solve the one-
dimensional diffusion equation is presented. This method, which is stable by design,
is quite general and can be used in other partial differential equations. Results with
the new scheme compare well with analytical solutions, and a study with a system
of two non-linear diffusion equations shows that the new method is more stable than
more traditional schemes. c© 1999 Academic Press
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1. INTRODUCTION

In atmospheric models vertical turbulent mixing is usually parametrized using ak-
diffusion approach, wherek depends on the mean variables. This parametrization creates a
system of non-linear diffusion equations with numerical stability problems [1, 2]. This type
of problem is one of the reasons the time step of climate models cannot be significantly
increased [13]. Non-linear diffusion equations are used to model a variety of different phe-
nomena, from engineering flows [5] and magnetohydrodynamics [6] to insect dispersal [4].
These models suffer from similar types of numerical stability problems, and a method that
“solves” these problems in a very general way would have a wide range of applicability.

The equation for the atmospheric turbulent diffusion of a variableA can be solved with
an implicit scheme, and a stability analysis shows that this scheme is unconditionally stable
for the simple case of a constantk. However,k is not constant (neither in space nor in
time) and usually is a non-linear function of the mean variables. In practice, the problem is
often solved with an implicit formulation forA and an explicit formulation fork, but such
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a scheme is not necessarily stable in all circumstances [1]. Due to the stability problem a
scheme usually referred to as “more-than-implicit” or “over-implicit”, which corresponds
to an implicitness factor larger than 1 [1], has been used in atmospheric models [2, 3].
This problem is particularly relevant in atmospheric models, such as climate and numerical
weather prediction models, where a system of several non-linear diffusion equations has to
be solved in a given fixed vertical grid.

The aim of this paper is to present a new type of algorithm with which to solve the
one-dimensional diffusion equation. This method is, in principle, stable by design for any
value of the stability coefficient. In Section 2 the new scheme is described. A derivation
of the diffusion equation is presented in Section 3 in order to show an analogy with the
new scheme. A discussion of some properties of the scheme is presented in Section 4. In
Subsection 5.1 the results of simple tests are shown. Although this work is mainly concerned
with the constant diffusion coefficient case, in Subsection 5.2, a situation that involves a
variablek is studied in order to illustrate the potential advantages of the new method in
dealing with non-linear diffusion equations. Some conclusions are presented in Section 6.

2. THE SCHEME

2.1. The Explicit Method

The one-dimensional diffusion equation for a generic propertyA is

∂A

∂t
= ∂

∂x

(
k
∂A

∂x

)
. (1)

Discretizing the one-dimensional diffusion equation in space and explicitly in time (as-
suming grid spacing is uniform and the diffusion coefficientk is constant) gives

An+1t
j = An

j + k
1t

1x2

(
An

j+1x − 2An
j + An

j−1x

)
, (2)

where1t is the time step,1x is the grid length,n is the time discretization index, andj is
the space discretization index. The stability coefficient is

α = k
1t

1x2
. (3)

A simple stability analysis shows that ifα≤ 0.5, Eq. (2) is stable and ifα >0.5 the
equation is unstable.

2.2. The New Scheme

The discretized version of the one-dimensional diffusion equation for the new scheme
proposed here can be written as

An+1t
j = An

j + k
1t

1s2

(
An

j+1s − 2An
j + An

j−1s

)
. (4)

To obtain Eq. (4) the spatial partial derivative is approximated by a finite difference along
the distance1s, which does not have to be equal to the grid length and which can be
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determined by imposing a fixed stability numberβ ≤ 1
2:

k
1t

1s2
= β ⇔ 1s= ±

√
k1t/β. (5)

The values ofA at the rhs of Eq. (4) can then be obtained by interpolation from the
original grid. For a stability coefficient of12 this is

k
1t

1s2
= 1

2
⇔ 1s= ±

√
2k1t (6)

and the following expression is then obtained:

An+1t
j = 1

2
An

j+1s +
1

2
An

j−1s. (7)

Other values can be imposed as long as they are less than the limit for stability that is
1
2. Examples used in this paper are1

4 and 1
6, where the latter is the value that leads to the

highest accuracy in the explicit scheme [7]. If the imposed stability number is1
6 the solver

An+1t
j = 1

6
An

j+1s +
2

3
An

j +
1

6
An

j−1s (8)

is then obtained, where1s is determined as

k
1t

1s2
= 1

6
⇔ 1s= ±

√
6k1t . (9)

The new scheme is stable by design, since it imposes a fixed value for the stability
coefficient below the stability limit. This information is then used to determine a new
grid, and the values at the new grid are obtained by interpolation from the original grid.
In practice, when the stability coefficient reaches values that lead to an unstable explicit
scheme, stability in the new scheme is achieved by extending the stencil (1s>1x).

Although this work is mainly concerned with the case of a constant diffusion coeffi-
cient, some results with a variable coefficient will be presented in Section 5 to illustrate
the potential advantages of the new scheme in dealing with non-linear problems. For the
more general case of a diffusion coefficient that changes in space, the new scheme can be
written as

An+1t
j = An

j +
1t

2
kj+1s+/2

(
1

1s2+
+ 1

1s+1s−

)(
An

j+1s+ − An
j

)
− 1t

2
kj−1s−/2

(
1

1s+1s−
+ 1

1s2−

)(
An

j − An
j−1s−

)
, (10)

where1s+ and1s− are, respectively, the distance that corresponds to larger and smaller
values of the space discretization index.

To obtain Eq. (10), a spatial partial derivative at pointj of a variableD is estimated as(
∂D

∂x

)
j

' 1

2

(
Dj+1s+ − Dj

1s+
+ Dj − Dj−1s−

1s−

)
. (11)
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It is easy to see that for the constant diffusion case1s+ = 1s− and Eq. (10) reduces to
Eq. (4).

By imposing a constant value to the stability numberβ,1s+ and1s− can be determined
from the expressions

1s2
− =

1

2
(k− + k+)

k−
k+

1t

β
(12)

1s2
+ =

1

2
(k− + k+)

k+
k−

1t

β
. (13)

These two relations and Eq. (10) can be used iteratively to find the optimal1s+ and
1s−. In this casek+ andk− can, for example, be equal tokj at the first iteration and for the
following iterations we have:

k− = kj−1s−/2

∧
k+ = kj+1s+/2. (14)

For a diffusion coefficient that changes in time as well as in space, Eq. (10) can also
be used with the diffusion coefficient being taken at time stepn. It is not complicated to
extend this type of scheme to diffusion equations with more than one dimension using
methods based on alternating directions. To include source and sink terms on the rhs of the
diffusion equation is also not problematic. It can be seen that this method is very general and
can probably be applied successfully to solve, in a stable manner, other partial differential
equations.

3. A DERIVATION OF THE DIFFUSION EQUATION

Here a simple derivation of the diffusion equation based on the random walk approach is
presented. LetNn

j be the number of particles at pointj and time stepn, and assume that the
probability of particles moving to the left or to the right is the same, equal top and smaller
than 1

2. Then at time stepn+1t ,

Nn+1t
j = pNn

j+1s + (1− 2p)Nn
j + pNn

j−1s. (15)

This relation can also be written in terms of a generic propertyA:

An+1t
j = pAn

j+1s + (1− 2p)An
j + pAn

j−1s. (16)

Expanding in Taylor series, after some simple algebra and neglecting the higher order
terms, the following expression is obtained:

∂A

∂t
= p1s2

1t

∂2A

∂x2
. (17)

Assuming that when1t,1s→ 0, lim(p1s2)/(1t)= k and k is a constant, Eq. (17)
represents the diffusion equation, with a constant diffusion coefficient.

More formal derivations of the diffusion equation based on the random walk approach can
be found in, among others [4, 8]. In any case, these more formal derivations are ultimately
also based on the assumption that when1t,1s→ 0, lim(p1s2)/(1t)= k. A discrete ver-
sion of this assumption plays an important role in the development of the scheme presented
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in this paper because with this method it is assumed thatp1s2/1t = k is true for any1t
and1s and not only when1t,1s→ 0.

4. DISCUSSION

There is also an analogy between the new diffusion scheme and the semi-Lagrangian
method used to solve the advection equation. Semi-Lagrangian methods have been widely
used in atmospheric models in recent years; detailed reviews can be found in [10] and [12].
The idea of solving the diffusion equation based on concepts related to advection schemes
is not new. In [9] and [11] it is shown how a positive definite advection transport algorithm
can be successfully used to solve the diffusion and the advection–diffusion equation. Much
of their underlying theory could possibly be adapted to devise a diffusion scheme similar
in its stability properties to the one presented in this paper.

An important point is that using the new scheme when1s<1x it should be possible to
obtain the explicit solver algorithm of Eq. (2). In fact, if1s<1x and the new scheme is
used with a quadratic interpolation and withβ = 1

2 the expression

An+1t
j = 1

2

(
δ(δ − 1)

2
An

j+1x + (1− δ2)An
j +

δ(δ + 1)

2
An

j−1x

)
+ 1

2

(
δ(δ − 1)

2
An

j−1x + (1− δ2)An
j +

δ(δ + 1)

2
An

j+1x

)
(18)

is obtained, whereδ= |1s|/1x. After some simple algebra,

An+1t
j = 1

2
δ2An

j+1x + (1− δ2)An
j +

1

2
δ2An

j−1x, (19)

which is, taking into account the definition ofδ, the same as the explicit diffusion solver
shown in Eq. (2).

In principle the new scheme presented in this work is stable by design, since it imposes a
fixed value for a stability coefficientβ, below the stability limit, and uses this information in
order to determine a new grid. The values of the variables at the new grid are then obtained
by interpolation from the original grid. However, a more detailed study is presented here
in order to analyse the stability of the new scheme and the behaviour of the amplification
factor compared with other schemes.

In order to simplify this study only a particular configuration of the scheme is analysed:
the one that corresponds to a linear interpolation and to1s between1x and 21x, i.e.,

1s= 1x + ε with 0< ε < 1x. (20)

With linear interpolation,

Aj+1s = (1− η)Aj+1x + ηAj+21x (21)

Aj−1s = (1− η)Aj−1x + ηAj−21x (22)

with

η = ε

1x
. (23)
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In this case the algorithm for the new scheme can be written as

An+1t
j = An

j + k
1t

1s2

(
An

j+1x − 2An
j + An

j−1x

)
+ k

1t

1s2
η
(

An
j+21x − An

j+1x − An
j−1x + An

j−21x

)
(24)

or after some simple algebra

An+1t
j = An

j + k
1t

1x2

(
An

j+1x − 2An
j + An

j−1x

)
+ k

1t

1x2

(
1

(1+ η)2 − 1

)(
An

j+1x − 2An
j + An

j−1x

)
+ k

1t

1x2

η

(1+ η)2
(

An
j+21x − An

j+1x − An
j−1x + An

j−21x

)
. (25)

Expanding the variable discrete values in Taylor series and neglecting the higher order
terms the equation

∂A

∂t
= k

∂2A

∂x2
+
(

3η + 1

(1+ η)2 − 1

)
k
∂2A

∂x2
(26)

is obtained, or

∂A

∂t
= γ k

∂2A

∂x2
(27)

with

γ = 3η + 1

(1+ η)2 . (28)

It is quite straightforward to see that forη= 0 (which corresponds to1s=1x) and for
η= 1 (1s= 21x), γ = 1 and the equation reduces to the normal diffusion equation. Sinceη

is between 0 and 1, γ is never larger than 1.125 and, for example, forη= 0.5, γ = 1.11111.
To analyse the stability of this particular scheme the amplification factor for a Fourier

mode in space is determined. The amplification factor, for the new scheme in this particular
configuration, is

ψ = 1− 4k
1t

1s2
sin2

(
K
1x

2

)
+ 2k

1t

1s2
η

[(
8 cos2

(
K
1x

2

)
− 10

)
cos2

(
K
1x

2

)
+ 2

]
, (29)

whereK is the wave number.
If η= 0, Eq. (29) becomes the amplification factor of the common explicit solver. The

following simplified extreme cases can be analysed. For cos2(K1x/2)= 1, ψ = 1 and for
sin2(K1x/2)= 1 the stability condition leads to

β(1− η) ≤ 1

2
, (30)
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FIG. 1. The amplification factor versus the wavelength divided by the grid length, for the new, the explicit, and
the implicit schemes. Results obtained withβ = 1

2
, which corresponds (assuming1s−1x= 0.51x) toα= 1.12.

Also shown are the analytic solution and an over-implicit scheme with an implicitness factor of 4.

which is always true since by design of the scheme

β ≤ 1

2

∧
0≤ η ≤ 1. (31)

To investigate in greater detail the properties of this scheme, the amplification factor of
this and other well-known schemes is plotted as a function of the wavelength divided by
the grid length, for different values ofβ. It is always assumed that1s−1x= 0.51x.

In Fig. 1 the amplification factor is shown for the new, the explicit and the implicit
schemes. These results were obtained forβ = 1

2, which corresponds to a value of the normal
stability coefficientα= 1.12 (assuming1s−1x= 0.51x). Also shown are the results for
the analytic solution and an over-implicit scheme. The implicit scheme takes the values of
the variables on the rhs of Eq. (1) at time-stepn+1t , which corresponds to an implicitness
factor of 1, and the over-implicit scheme uses an implicitness factor of 4 [1]. It can be seen
that, since the stability coefficientα is above 0.5, the explicit solver gives an unstable solution
for wavelengths smaller than about 4.31x. For this case the implicit scheme provides the
best results when compared with the analytical solution. However, the new scheme is
reasonably well behaved for wavelengths larger than about 61x. The results for the over-
implicit scheme are represented in these figures to show that, although stable, this type of
scheme can be highly inaccurate.

In Fig. 2 the same is shown, but in this case for a value ofβ = 1
4, which corresponds to

α= 0.5625. Again, the explicit scheme is above its stability limit and gives an amplification
factor less than−1 for wavelengths smaller than about 2.551x. In this case the new scheme,
when compared with the analytic solution, is clearly superior to the implicit scheme (except
for wavelengths close to 21x).

In Fig. 3 the same is shown but forβ = 1
6 andα= 0.375. In this case the explicit scheme

is always stable. The new scheme is again better than the implicit and the explicit schemes
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FIG. 2. Same as Fig. 1 but forβ = 1
4

andα= 0.5625.

for most of the wavelengths shown in the figure. The results of the new scheme are actually
very similar to the analytic solution for wavelengths above 5.51x.

Figure 4 shows the amplification factor versus the wavelength divided by the grid length,
for the analytic solution, the new scheme, the implicit scheme, the Crank–Nicholson
scheme, and the Dufort–Frankel scheme. The Crank–Nicholson scheme is obtained when
the spatial diffusion term is averaged in time between time stepsn and n+1t , which

FIG. 3. Same as Fig. 1 but forβ = 1
6

andα= 0.375.
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FIG. 4. The amplification factor versus the wavelength divided by the grid length, for the analytic solution,
the new scheme, the implicit scheme, the Crank–Nicholson scheme, and the Dufort–Frankel scheme. Results were
obtained withβ = 1

6
andα= 0.375.

corresponds to an implicitness factor of 0.5. The Dufort–Frankel scheme is a three-time-
level scheme slightly altered in order to have, on the rhs of the discretized equation, the value
of the variable at the central point as an average between time stepsn−1t andn+1t .
These results are obtained withβ = 1

6 andα= 0.375. The Dufort–Frankel scheme provides
the best results when compared with the analytic solution. However, above wavelength
51x the new scheme gives results that are better than the ones obtained with the Crank–
Nicholson scheme and comparable with the ones obtained with the Dufort–Frankel
scheme.

In Fig. 5 the same as in Fig. 4 is shown, but forβ = 1
4 andα= 0.5625. The results

obtained with the Crank–Nicholson scheme are quite superior to those of any other scheme
and compare very well with the analytic solution. The new scheme, however, gives results
that are quite reasonable above wavelength 41x and are much better than the ones obtained
with the Dufort–Frankel scheme. In this case the results of the Dufort-Frankel scheme have
some odd features, which are well known [6].

In summary it can be said that in general the new scheme is reasonably accurate when
compared with analytic solutions and other numerical schemes. However, for wavelengths
close to 21x, the new scheme does not seem to provide very satisfactory results.

The issue of conservation is one to which special attention should be paid. The new scheme
for the case of a constant diffusion coefficient does not have conservation problems: it is
straightforward to show that the new scheme with linear interpolation is conservative for a
constant diffusion coefficient as long as the values of the variables close to the boundaries
are set in an appropriate manner. For the case of a variable diffusion coefficient the problem
is more complicated, but since this paper is mainly about the constant diffusion coefficient
case, this will not be explored any further. Also, in the applications that are being considered
here, the numerical stability problem is more important than the issue of conservation.
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FIG. 5. Same as Fig. 4 but forβ = 1
4

andα= 0.5625.

A potential problem with the new scheme is how to impose boundary conditions. The
new scheme will have a problem every time the distance1s is larger than the distance
to the boundary. A simple solution is this: every time the distance1s (and the chosen
interpolation scheme) implies that the value of the variable at points outside the boundaries
has to be defined, the value of the variable at these points is set to be equal to the boundary
value. This assumption has been tested and has proved to be quite realistic for the surface
boundary condition of the vertical turbulent diffusion equation in atmospheric models.

5. SOME SIMPLE TESTS

5.1. A Comparison with an Analytical Solution

For the simplified case of a constant diffusion coefficient and a delta function at initial
time t = 0 s, the diffusion equation has an analytical solution. The analytical solution at
time t = 100 s is used as the initial condition of the numerical integrations, and the solutions
of these simulations after 100 and 500 s are then compared against the analytical solutions
at the corresponding times.

Figure 6 shows the initial state, the analytical solution at timet = 200 s, and two numer-
ical solutions obtained with the new method 100 s after the initial state: one using linear
interpolation and the other using cubic interpolation, both withβ = 1

2. In this case the diffu-
sion coefficient is 10 m2 s−1. The numerical integrations use a grid space of 1 m and a time
step of 1 s. As can be seen, both numerical integrations, with the linear or cubic interpo-
lation, have reasonable results when compared with the analytical solution. However, the
simulation that uses cubic interpolation is clearly more accurate than the one with linear
interpolation and is almost indistinguishable from the analytical solution.

In order to perform a more systematic study several runs for the same situation were
performed with the new scheme, with linear and cubic interpolations, and with the implicit
scheme.



A STABLE DIFFUSION SCHEME 413

FIG. 6. The initial state, the analytical solution at timet = 200 s, and two numerical solutions obtained with
the new method 100 s after the initial state, one using linear interpolation and the other using cubic interpolation.

In Table 1 the results for the new scheme with linear interpolation are shown. The results
correspond to different values ofβ( 1

2,
1
4, and1

6), different values of the diffusion coefficient
(1 and 10 m2 s−1), and different run times (100 and 500 s). For each of these different
experiments, the root mean square (RMS) error, when compared with the analytical solution,
was computed. In Table 2 the same is shown but for the new scheme with cubic interpolation.

It can be seen that the scheme with cubic interpolation is in general more accurate than
that with linear interpolation. Another aspect, which is particularly obvious with the cubic

TABLE 1

Results with the New Scheme with Linear Interpolation, for the

Case of a Constant Diffusion Coefficient (see text for details)

β k (m2 s−1) Time (s) RMS error

1
2

1 100 9.65522E-2
1
2

1 500 1.18139E-1
1
4

1 100 1.00434E-3
1
4

1 500 4.23027E-4
1
6

1 100 3.26799E-2
1
6

1 500 4.13800E-2
1
2

10 100 6.64590E-3
1
2

10 500 7.56742E-3
1
4

10 100 2.97326E-3
1
4

10 500 3.35876E-3
1
6

10 100 1.42019E-3
1
6

10 500 1.80493E-3
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TABLE 2

Results with the New Scheme with Cubic Interpolation, for the

Case of a Constant Diffusion Coefficient (see text for details)

β k (m2 s−1) Time (s) RMS error

1
2

1 100 2.14781E-3
1
2

1 500 9.06875E-4
1
4

1 100 1.00434E-3
1
4

1 500 4.23027E-4
1
6

1 100 3.98937E-5
1
6

1 500 3.21637E-5
1
2

10 100 1.13189E-3
1
2

10 500 4.77263E-4
1
4

10 100 5.63754E-4
1
4

10 500 2.34189E-4
1
6

10 100 5.66400E-6
1
6

10 500 1.56124E-5

interpolation, is that the more accurate results are obtained whenβ = 1
6. This is in agreement

with the fact that with the explicit scheme the most accurate results are obtained when the
stability coefficient is1

6 [7].
Comparing the previous tables with Table 3, where similar results are shown for the

implicit scheme, it can be seen that the implicit scheme is always less accurate than the new
scheme with cubic interpolation. In particular, the new scheme with cubic interpolation and
β = 1

6 is often 1 or 2 orders of magnitude more accurate than the implicit scheme.
Although all the results shown are from runs that were performed with a domain size of

10,000 points, the same simulations were also performed with domains of 1,000 and 100,000
points. However, the results of these runs are not shown because no major sensitivity to the
domain size was detected.

The conservation issue was also examined in this study. These results are not shown
because, although no special care was taken with the values close to the boundaries, the
difference between the total initial concentration and the final one was usually less than
0.001% for all the runs with the new scheme.

TABLE 3

Results with the Implicit Scheme for the

Case of a Constant Diffusion Coefficient (see

text for details)

k (m2 s−1) Time (s) RMS error

1 100 3.50450E-3
1 500 1.52026E-3

10 100 1.69009E-3
10 500 7.01931E-4
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5.2. A System of Two Non-linear Diffusion Equations

To illustrate the potential advantages of the new scheme, the system of equations

∂u

∂t
= ∂

∂z
k
∂u

∂z
(32)

∂θ

∂t
= ∂

∂z
k
∂θ

∂z

is considered [2], whereu is the wind speed andθ is the potential temperature. The diffusion
coefficient is

k = l 2

∣∣∣∣∂u

∂z

∣∣∣∣(1+ b|Ri|)n, (33)

wherel is a mixing length and Ri is the Richardson number defined by

Ri = g(∂θ/∂z)

θ0(∂u/∂z)2
, (34)

whereg is the acceleration of gravity andθ0 is a constant. The values that are used for the
constantsb andn are [2]n=−2 andb= 5 for Ri> 0 andn= 1/2 andb= 20 for Ri< 0.
This type of equation is often encountered in problems related to the parametrization of
turbulence in models of geophysical flows. This particular set of equations has been used
to parametrize vertical turbulent mixing in global atmospheric models [2].

A simplified situation is considered: a one-dimensional domain with 105 points separated
by a grid space of 1 m. The initial values foru andθ are 10 m s−1 and 310 K, respectively,
in every point of the domain except in the middle point, whereu is 0 m s−1 andθ is 250 K.

FIG. 7. Time evolution ofθ in the middle point of the domain for the first 500,000 s, obtained with the implicit
method (time steps of 100 and 1,000 s) and with the new scheme.



416 JOÃO TEIXEIRA

FIG. 8. Same as Fig. 7, but for the last 50,000 s of a run of 1,000,000 s.

The system is solved by two different methods: (i) a method that will be referred to
as “implicit” where on the rhs the mean variables are taken implicitly and the diffusion
coefficient explicitly in time, and (ii) the method presented in this paper, withβ = 1

2 and a
linear interpolation scheme. Since in this situation the diffusion coefficient varies in space
and time, Eqs. (10), (12), and (13) will be used, as shown in Section 2, with three iterations.

As can be seen in Fig. 7, where the time evolution ofθ in the middle point of the domain
is shown for the first 500,000 s, the solution obtained with the implicit method is noisy for
time steps of 100 and 1,000 s. The amplitude of the initial oscillation increases with the
time step. The results with the new scheme are better. A constant solution is obtained, as is
more clear from Fig. 8.

In Fig. 8 the potential temperature evolution from 950,000 to 1,000,000 s is shown. It can
be seen that the solutions obtained with the implicit method are always noisy. Again the
amplitude of the oscillations increases with the time step. With the new scheme a solution
with a constant value of 310 K is obtained.

With the new method the simulations were performed with a time step of 1,000 s, but
the results for the new scheme are independent of the time step used (at least in the range
1–10,000 s). This test shows that the new method has fewer numerical stability problems
than the implicit method.

6. CONCLUSIONS

In this paper a new method to solve the one-dimensional diffusion equation has been
presented. This new scheme is stable by design, since it imposes a fixed value for a stability
coefficient below the stability limit and uses this information to determine a new grid. The
values of the variables at the new grid are then obtained by interpolation from the original
grid. The new method is quite general and can be used to solve other partial differential
equations.
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An analysis of the amplification factor of some particular configurations of this scheme
shows that the new method is not only stable but often more accurate than other, commonly
used, numerical methods. It is also shown that the explicit scheme can be obtained as a
particular configuration of the new method presented in this paper.

The results of the new scheme compare well with analytical solutions, for the simplified
case of a constant diffusion coefficient. Some configurations of the new scheme can actually
provide results that are always more accurate than with the implicit method.

A study with a system of two non-linear diffusion equations for wind and potential
temperature shows that the new method is more stable than a more traditional implicit
scheme, where on the rhs the mean variables are taken implicitly and the diffusion coefficient
is taken explicitly in time.
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12. A. Staniforth and J. Cˆoté, Semi-Lagrangian integration schemes for atmospheric models—A review,Mon.
Weather Rev.119, 2206 (1991).

13. D. L. Williamson, Application of semi-lagrangian methods to climate simulation, inProceedings on Semi-
Lagrangian Methods, ECMWF, United Kingdom, November 1995(ECMWF, Reading, UK, 1996), p. 167.


	1. INTRODUCTION
	2. THE SCHEME
	3. A DERIVATION OF THE DIFFUSION EQUATION
	4. DISCUSSION
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	5. SOME SIMPLE TESTS
	FIG. 6.
	TABLE 1
	TABLE 2
	TABLE 3
	FIG. 7.
	FIG. 8.

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

